Knowing what you don't know: Learning to abstain and beyond

Harikrishna Narasimhan

Google Research

Contributors

Wittawat Jitkrittum

Ankit S. Rawat

Aditya K. Menon

Sanjiv Kumar

Standard classification paradigm

- Standard classification **single model** for all samples
- However, it may be challenging to model the entire input space

Learning to reject

• Model can give up on a sample, incurring some cost

Learning to defer to an expert

- Model can **defer** to an **expert**, incurring some **cost**
 - e.g., human expert

Learning to defer to an expert

- Model can **defer** to an **expert**, incurring some **cost**
 - e.g., human expert, powerful learning model

Learning to abstain on outliers

• Model can abstain on samples it deems to be **out-of-distribution (OOD)**

Google

Goal: learn the base classifier, **and** the abstention rule

Cost of abstention: classical version

We will denote a joint classifier $h: X \rightarrow [n] \cup \{ \ alpha \}$. In the simplest case, one may associate a constant cost c to abstaining on a sample

$$\mathbb{1}(\hat{y} \neq y, \, \hat{y} \neq \mathbf{a}) + \mathbf{c} \cdot \mathbb{1}(\hat{y} = \mathbf{a})$$
Usual error when not abstaining Constant cost when abstaining

Chow's rule: a surprisingly competitive baseline

C. Chow. On optimum recognition error and reject tradeoff. *IEEE Transactions on Information Theory*, 16(1):41–46, 1970.

Bayes-optimal rejection rule: abstain on a sample when

$$\max_y \mathbb{P}(y \,|\, x) \,<\, 1-c$$

Chow's rule: a surprisingly competitive baseline

C. Chow. On optimum recognition error and reject tradeoff. *IEEE Transactions on Information Theory*, 16(1):41–46, 1970.

Bayes-optimal rejection rule: abstain on a sample when

$$\max_{y} \widehat{\mathbb{P}}(y \,|\, x) < 1 - c$$
In practice: max softmax probability from a standard classifier

When Chow's rule fails and ways to remedy it!

- Learning to reject
 - classical Chow's rule is very competitive
- Learning to defer to an expert
 - remedy: expert-aware Chow's rule
- Learning to abstain on outliers
 - remedy: outlier-aware Chow's rule

Cost of abstention: when deferring to an expert

In the learning to defer paradigm, the cost of invoking the expert:

$$\mathbb{1} \left(\hat{y} \neq y, \, \hat{y} \neq \textcircled{0} \right) \, + \, c_{\exp}(x, y) \cdot \mathbb{1} \left(\hat{y} = \textcircled{0} \right)$$

Expert cost: fixed cost + expert's error rate

A natural candidate for the expert cost would include both a fixed cost and the penalty when the expert makes a mistake

$$c_{\exp}(x,y) = c_0 + \mathbf{1}(y \neq h_{\exp}(x))$$
Fixed cost
Expert prediction
(e.g. monetary cost)

Chow's rule can be sub-optimal for this setting

Synthetic dataset Base model: linear features Expert model: quadratic features

Expert-aware Chow's rule

Bayes-optimal rule: defer on a sample when

$$\max_{y} \mathbb{P}(y \mid x) < \mathbb{E}_{y \mid x} [\mathbf{1}(y = h_{\exp}(x))] - c_0$$
~ Base classifier's confidence

Expert-aware Chow's rule

Bayes-optimal rule: defer on a sample when

When the expert's confidence is highly non-uniform, this is substantially different from Chow's rule

$$\max_{y} \mathbb{P}(y \mid x) < \mathbb{E}_{y \mid x} [\mathbf{1}(y = h_{\exp}(x))] - c_0$$
~ Base classifier's confidence

Expert-aware Chow's rule

Bayes-optimal rule: defer on a sample when

Unlike classical Chow, we need to estimate the expert's confidence

Separate model for expert's confidence

Raghu et al. '19 suggest training separate model to estimate expert's confidence (using a sample annotated with the expert's predictions)

Separate model for expert's confidence

- This approach has appealing properties:
 - ✓ Simple to compute
 - ✓ Approximates the Bayes deferral rule
 - Separate models to estimate base and expert confidence

Cost-sensitive softmax cross-entropy (CSS)

• Mozannar & Sontag '20 suggest training a joint model with an additional label \perp

Cost-sensitive softmax cross-entropy (CSS)

- Mozannar & Sontag '20 suggest training a joint model with an additional label \perp
- Minimize a **cost-sensitive** softmax cross-entropy (**CSS**) loss

$$\ell_{css}(x, y, \bar{f}(x)) = -\log(\bar{p}_y(x)) - \mathbf{1}(y = h_{exp}(x)) \cdot \log(\bar{p}_{\perp}(x)) - c_0 \cdot \sum_{y'} \log(\bar{p}_{y'}(x))$$

$$\overset{Classification loss}{to train base model} \qquad \overset{Loss to estimate}{expert's confidence} \qquad \overset{Takes into account}{fixed cost c_0}$$

The case for CSS

- The CSS loss has a number of appealing characteristics:
 - ✓ Joint model for both base classifier and expert's confidence
 - ✓ Optimal solution matches the **Bayes-optimal classifier**
 - ✓ Empirically effective on several benchmarks
 - ! when fixed cost $c_0 = 0...$

The case against CSS?

• CSS strongly **underfits** when there is non-zero fixed deferral cost $c_0!$

A label smoothing perspective

• CSS equivalently applies high level of **label smoothing**:

$$\ell_{css}(x, y, \bar{f}(x)) = -\log(\bar{p}_y(x)) - \mathbf{1}(y = h_{exp}(x)) \cdot \log(\bar{p}_{\perp}(x)) - c_0 \cdot \sum_{y'} \log(\bar{p}_{y'}(x))$$

Encourages predictions to become highly uniform
Low separation between true label and competing labels

Treat all labels as candidate positive

A label smoothing perspective

• CSS equivalently applies high level of **label smoothing**:

$$\ell_{css}(x, y, \bar{f}(x)) = -\log(\bar{p}_y(x)) - \mathbf{1}(y = h_{exp}(x)) \cdot \log(\bar{p}_{\perp}(x)) - c_0 \cdot \sum_{y'} \log(\bar{p}_{y'}(x))$$

 \circ Encourages predictions to become highly uniform

• Low separation between true label and competing labels

- Not apparent when $c_0 = 0$ (as in prior work)!
 - \circ $c_0 > 0$ is crucial in practical settings (e.g. when the expert is a larger model)

Solution: Set $c_0 = 0$ during training; include it in a post-hoc step

• Train base model with $c_0 = 0$, i.e., by minimizing:

$$\ell_{css}(x, y, \bar{f}(x)) = -\log \left(\bar{p}_{y}(x)\right) - \mathbf{1}(y = h_{exp}(x)) \cdot \log \left(\bar{p}_{\perp}(x)\right) - c_{0} \cdot \sum_{y'} \log(\bar{p}_{y'}(x)) - \frac{1}{p_{1}} \sum_{y'} \frac{1}{p_{2}} \sum_{u} \sum_{y'} \frac{1}{p_{1}} \sum_{y'} \frac{1}{p_{2}} \sum_{u} \sum_{y'} \frac{1}{p_{1}} \sum_{y'} \frac{1}{p_{2}} \sum_{y'} \frac{1}{p_{2}$$

1

Solution: Set $c_0 = 0$ during training; include it in a post-hoc step

Construct a **post-hoc rejector** to include c_0 (that mimics the Bayes-optimal rule):

$$\max_{y} \, \overline{p}_y(x) < \overline{p}_\perp(x) - c_0$$
Probability that the expert is correct Deferral cost

Proposal: two-step plug-in approach [Narasimhan et al '22]

Experimental setup

• Specialist expert

Baselines

- Model allowed to defer to a "specialist" expert trained on a subset of labels
- **Chow**: confidence thresholding based only on the deferral cost c_0
 - \circ **CSS**: in-training loss of Mozannar & Sontag (2020) with c_0 included
 - **OvA**: in-training loss of Verma and Nalisnick (2022) with c_0 included

Underfits when c₀ is large

Ignores expert

error

Experimental results: expert-aware abstention

When Chow's rule fails and ways to remedy it!

- Learning to reject
 - classical Chow's rule is very competitive
- Learning to defer to an expert
 - remedy: expert-aware Chow's rule
- Learning to abstain on outliers
 - remedy: outlier-aware Chow's rule

Learning to abstain on outliers

Abstain on "out-of-distribution" samples that come from distribution different from the one used for training

Inlier samples

Outlier samples

Chow's rule (or the MSP scorer) is a popular baseline!

Thresholding the maximum softmax probability (MSP) from a standard classifier is a common baseline in this literature [Hendrycks et al. '17; Vaze et al. '22].

$$\max_{y\in [L]}\,\widehat{\mathbb{P}}_{\mathrm{in}}(y\,|\,x)\,<\,t$$

Chow's rule can fail for outlier detection

Cost of abstention: when abstaining on outliers

We need to account for both inlier **and** outlier abstentions.

$$\mathbb{P}_{\text{in}}\left(\hat{y} \neq y, \ \hat{y} \neq \textcircled{log}\right) + \alpha \cdot \mathbb{P}_{\text{in}}\left(\hat{y} = \textcircled{log}\right) + \beta \cdot \mathbb{P}_{\text{out}}\left(\hat{y} \neq \textcircled{log}\right)$$
Error on inlier samples (when not abstaining)
Cost of abstaining on inlier samples
Cost of abstaining on outlier samples

Outlier-aware Chow's rule

Bayes-optimal rule: abstain on a sample when [Narasimhan et al. '23]

$$\max_{y} \mathbb{P}_{\text{in}}(y \,|\, x) < 1 - \alpha + \beta \cdot \frac{\mathbb{P}_{\text{out}}(x)}{\mathbb{P}_{\text{in}}(x)}$$
Inlier class
probabilities
Outlier-to-inlier
density ratio

Outlier-aware Chow's rule

Bayes-optimal rule: abstain on a sample when [Narasimhan et al. '23]

We need to estimate both the inlier probabilities and the density ratio

Our proposal: Two-step plug-in approach [Narasimhan et al '23]

Given: labeled inlier sample S_{in} , and an unlabeled mix of inlier and outlier samples S_{mix}

Google

When Chow's rule fails and ways to remedy it!

- Learning to reject (L2R)
 - Classical Chow's rule is very competitive
- Learning to defer to an expert (L2D)
 - Chow may fail; use *expert-aware* Chow
- Learning to abstain on outliers (OOD)
 - Chow may fail; use *outlier-aware* Chow

L2R	$\max_y \mathbb{P}(y x)$	<	1 - c
L2D	$\max_y \mathbb{P}(y x)$	<	$\mathbb{E}_{y x}[1(y=h_{\exp}(x))] - c_0$
OOD	$\max_{y} \mathbb{P}_{\mathrm{in}}(y x)$	<	$1 - lpha + eta \cdot rac{\mathbb{P}_{ ext{out}}(x)}{\mathbb{P}_{ ext{in}}(x)}$

Narasimhan et al. "Post-hoc Estimators for Learning to Defer to an Expert". NeurIPS 2022.

Narasimhan et al. "Learning to Reject Meets OOD Detection: Are All Abstentions Created Equal?". Manuscript, 2023. [arXiv:2301.12386]

Thank you!