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Standard classification paradigm

e Standard classification — single model for all samples

e However, it may be challenging to model the entire input space
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Input sample Decision maker Prediction
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Learning to reject

e Model can give up on a sample, incurring some cost

Input sample Decision maker Prediction

GOOgle Chow (1970); Cortes et al. (2016); Ramaswamy et al. (2018)



Learning to defer to an expert

e Model can defer to an expert, incurring some cost

o e.g., human expert

+17

Input sample Decision maker Expert / Specialist Prediction

GOOgle Madras et al. (2018)



Learning to defer to an expert

e Model can defer to an expert, incurring some cost

o e.g., human expert, powerful learning model

> 4+

Input sample Decision maker Expert / Specialist Prediction

GOOgle Madras et al. (2018)



Learning to abstain on outliers

e Model can abstain on samples it deems to be out-of-distribution (OOD)

B

Input sample Decision maker Prediction

GOOgle Hendrycks & Gimpel (2017)



Goal: learn the base classifier,
' and the abstention rule

___________________________________________________________
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Cost of abstention: classical version

We will denote a joint classifier h: X—[n] U{ &}. In the simplest case, one may
associate a constant cost c¢ to abstaining on a sample

1§#y9#8) +c-1(§=0)

AR

Usual error when not abstaining Constant cost when abstaining
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Chow’s rule: a surprisingly competitive baseline

C. Chow. On optimum recognition error and reject tradeoff.
IEEE Transactions on Information Theory, 16(1):41-46, 1970.

Bayes-optimal rejection rule: abstain on a sample when

max P(y|xz) < 1 —c
y
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Chow’s rule: a surprisingly competitive baseline

C. Chow. On optimum recognition error and reject tradeoff.
IEEE Transactions on Information Theory, 16(1):41-46, 1970.

Bayes-optimal rejection rule: abstain on a sample when
AN
max P(y|x) < 1 —c
Yy

In practice: max softmax probability
from a standard classifier
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When Chow'’s rule fails and ways to remedly it!

e Learning to reject

o classical Chow’s rule is very competitive

e Learning to defer to an expert

o remedy: expert-aware Chow's rule

e Learning to abstain on outliers

o remedy: outlier-aware Chow'’s rule
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Cost of abstention: when deferring to an expert

In the learning to defer paradigm, the cost of invoking the expert:

1(§#Y §7 8) + ceplz,y) (I =8)

Usual error when not abstaining Cost of invoking the expert
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Expert cost: fixed cost + expert’s error rate

A natural candidate for the expert cost would include both a fixed cost and the
penalty when the expert makes a mistake

Cexp(x7 y) = Co + 1(y 7é hexp(x))

/S /S

Fixed cost Expert prediction
£ ) (e.g. monetary cost)
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Chow’s rule can be sub-optimal for this setting

90
6 . : —— Chow 4
4 gs i Bayes-optimal /
% X 80 =
o > / Degrades with
x .
£75 more abstentions!
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X1 Samples deferred to expert (%)
Synthetic dataset

Base model: linear features
Expert model: quadratic features
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Expert-aware Chow’s rule

Bayes-optimal rule: defer on a sample when

max P(y|z) < Eya[1(y = hexp(2))] — co

/ /

~ Base classifier's ~ Expert’s confidence
confidence
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Expert-aware Chow'’s rule
When the expert's confidence is highly

Bayes-optimal rule: defer on a sample when non-uniform, this is substantially
different from Chow's rule

/ e i é

~ Base classifier's ~ Expert’s confidence
confidence

Google



Expert-aware Chow’s rule

Bayes-optimal rule: defer on a sample when

max Ply|z) < Eyp[l(y= hep(@))] - co

/ /

~ Base classifier's ~ Expert’s confidence
confidence

Unlike classical Chow, we need to estimate the expert's confidence
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Separate model for expert’s confidence

Raghu et al. “19 suggest training separate model to estimate expert’'s confidence
(using a sample annotated with the expert’s predictions)

max Ply|z) < Eyp[1(y= hep(@))] - co

/ /

~Softmax ~ Separate model to
probabilities from estimate expert's
base classifier confidence
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Separate model for expert’s confidence

e This approach has appealing properties:

v/ Simple to compute
v Approximates the Bayes deferral rule

! Separate models to estimate base and expert confidence
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Cost-sensitive softmax cross-entropy (CSS)

e Mozannar & Sontag ‘20 suggest training a joint model with an additional label L
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Cost-sensitive softmax cross-entropy (CSS)

e Mozannar & Sontag ‘20 suggest training a joint model with an additional label L

e Minimize a cost-sensitive softmax cross-entropy (CSS) loss

loss (2., f(2)) = —log (B,(2)) — L(y = hexp(2)) - log (BL(2)) — co - ) log(Dy ()

/ / J

Classification loss Loss to estimate

. , . Takes into account
to train base model expert's confidence

fixed cost ¢,

GOOgle *The original loss of Mozannar and Sontag uses a slightly tighter formulation; see our paper for details 22



The case for CSS

e The CSS loss has a number of appealing characteristics:

Joint model for both base classifier and expert’s confidence

Optimal solution matches the Bayes-optimal classifier

N SN SN

Empirically effective on several benchmarks

when fixed cost C, = 0..
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The case against CSS?

e CSS strongly underfits when there is non-zero fixed deferral cost c /!

—— train

65
60 E e 4 20.0 Fixed deferral cost co
~ = g = 0.0
=23 G 15.0 == 0.01
o o @ 0.02
E 2 Training 8
345 performance = 10.0
] degrades 5 o
< 40 — Predictions become
C; 5.0 highly uniform
W e NG
. IS ) 0.0 =
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Fixed deferral cost ¢g Normalised entropy
CIFAR 100
ResNet8 base
ResNet32 expert
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A label smoothing perspective

e CSS equivalently applies high level of label smoothing:

——————————————————————————

b4, F(@)) = —108 (3, (2)) — 1y = hexp(®)) - 08 (5. (=) —ic0 - 3 log(py ()

Y

o Encourages predictions to become highly uniform /

o Low separation between true label and competing labels Treat all labels as
candidate positive

Google 25



A label smoothing perspective

e CSS equivalently applies high level of label smoothing:

b4, F(@)) = —108 (3, (2)) — 1y = hexp(®)) - 08 (5. (=) —ic0 - 3 log(py ()

Y

o Encourages predictions to become highly uniform /

o Low separation between true label and competing labels Treat all labels as
candidate positive

e Not apparent when ¢, = O (as in prior work)!

o ¢,>0iscrucial in practical settings (e.g. when the expert is a larger model)
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Solution: Set ¢ = 0 during training; include it in a post-hoc step

e Train base model with ¢, = 0, i.e., by minimizing:

gcss(xayhf_(x)) = —-10g (ﬁy(m)) - l(y - heXP(x)) ) log (}5_1_(37)) - %

yl

P1 P2 .. PL Z_H

Class probabilities Probability that the
expert is correct
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Solution: Set ¢ = 0 during training; include it in a post-hoc step

Construct a post-hoc rejector to include c, (that mimics the Bayes-optimal rule):

max Z—Dy(x) < 1—7J_(x) — Co

Y / \\
Probability that the Deferral cost
expert is correct

Google

28



Proposal: two-step plug-in approach [Narasimhan et al ‘22]

{ Class probabilities py,(x) w py(z), p1(z)

- Logits
— Minimise joint e 0B
_______ expert-aware ;) f’
B loss with ¢y = 0 } 1 e-::fz
ogit f1

Base model training

Google

{ Expert confidence p, (z) J

Compute statistics

( Use rejection rule:
{ for any ¢y

max, py(2) < pL(z) —

co

Final classifier
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Experimental setup

e Specialist expert

o Model allowed to defer to a “specialist” expert trained on a subset of labels

Ignores expert
error

e Baselines /

o Chow: confidence thresholding based only on the deferral cost ¢,
o  CSS:in-training loss of Mozannar & Sontag (2020) with ¢, included
o  OvVA:in-training loss of Verma and Nalisnick (2022) with C, included \\

Underfits when ¢,
is large
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Experimental results: expert-aware abstention

%
o

Accuracy (%)
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o
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" P Chow: degrades when
) .,' deferring more to
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Samples deferred to expert (%)

Joint losses: degrade

when deferring less
to expert (high c,)
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CIFAR 100
ResNet8 base
ResNet56 expert

(expert trained on first 10 coarse labels)
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When Chow'’s rule fails and ways to remedly it!

e Learning to reject

o classical Chow’s rule is very competitive

e Learning to defer to an expert

o remedy: expert-aware Chow's rule

e Learning to abstain on outliers

o remedy: outlier-aware Chow'’s rule

Google
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Learning to abstain on outliers

Abstain on “out-of-distribution” samples that come from distribution different from
the one used for training

Inlier samples Outlier samples

Google https://www.pexels.com/
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Chow'’s rule (or the MSP scorer) is a popular baseline!

Thresholding the maximum softmax probability (MSP) from a standard classifier is a
common baseline in this literature [Hendrycks et al. “17; Vaze et al. 22].

max @m ) <t
mas (y|z)

Google
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Chow'’s rule can fail for outlier detection

P. (y=1|x) ~= 1: Chow's rule
will not abstain on these,
despite them being outliers.

%

| —— Inlier samples
. Outlier samples

P. (y=1|x) ~= 0.5: Chow's
rule will abstain on these,
despite them being inlier
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Cost of abstention: when abstaining on outliers

We need to account for both inlier and outlier abstentions.

Pin(§#y §#@0) + a-Pu(§=62) + B Pou(§ # 2

N

Error on inlier samples Cost of abstaining Cost of not abstaining
(when not abstaining) on inlier samples on outlier samples

Google
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Outlier-aware Chow’s rule

Bayes-optimal rule: abstain on a sample when [Narasimhan et al. ‘23]

Pout(x

max Py (y|z) < 1—a+ 8- out(2)
Y / Pin ()
pﬁgléigﬁ:f:isess Outlier-to-inlier

density ratio
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Outlier-aware Chow’s rule

Bayes-optimal rule: abstain on a sample when [Narasimhan et al. ‘23]

———

— ]P)out (213)

P; < 1-— ~
myax /m(y | ) a+ [ P, (2)
pﬁgléigﬁli?isess Outlier-to-inlier

density ratio

We need to estimate both the inlier probabilities and the density ratio
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Our proposal: Two-step plug-in approach [Narasimhan et al 23]

Given: labeled inlier sample S, , and an unlabeled mix of inlier and outlier samples S_

L) . s Lo itS
Minimise joint } _oglts { Apply noise correction: (), Yous (2) { Use rejection rule:
Sm | outlier-aware Ju.. o fL e Py(Z), Yout
S. . ¥ logs with Outli class probabilities py(z) max, p,(z) <
S a=f=1 J loglilt }er { outlier density Yout () I { 1-a+ B You(z)
— — out
Base model training Compute statistics Final classifier
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Experimental results: outlier-aware abstention

o o
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When Chow'’s rule fails and ways to remedly it!

e Learning to reject (L2R)

e Learning to defer to an expert (L2D)

(@)

@)

Classical Chow's rule is very competitive L2R

max P(y|x)
y

< 1l-c

L2D
Chow may fail; use expert-aware Chow

max P(y|z)
Y

< IEy|alc[ (

= hexp(2))] = o

e Learning to abstain on outliers (O0D) OOD

Google

(@)

max Pi,(y|lz) < 1—a+p-
y

Pout (217)
Pin (ZL‘)

Chow may fail; use outlier-aware Chow

Narasimhan et al. “Post-hoc Estimators for Learning to Defer to an Expert”. NeurlPS 2022.

Narasimhan et al. “Learning to Reject Meets OOD Detection: Are All Abstentions Created
Equal?”. Manuscript, 2023. [arXiv:2301.12386]

Thank you!
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